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Abstract

The quadrature method of moments (QMOM), a promising new tool for aerosol
dynamics simulation is extended to generally-mixed multicomponent particle
populations.  This paper develops the mathematical and statistical foundation for a fully
multivariate extension of the QMOM using principal components analysis (PCA).  In
essence, the full particle distribution function is systematically replaced by a set of lower-
order mixed moments and corresponding multivariate quadrature points optimally
assigned through PCA and back projection.  The resulting PCA-QMOM is illustrated for
a multivariate normal particle population in order to compare quadrature point
assignments with analytic results, but the method is applicable to arbitrary distributions.
Physical and optical properties can be reliably estimated by summation over the PCA-
assigned quadrature points.  Application of the PCA-QMOM to the dynamics of
generally-mixed particle populations evolving under condensation, coagulation, and
sintering is described in a following report (Part II).
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1  Introduction:

The method of moments (MOM) has been developed in recent years into a powerful and

efficient simulation tool that is now a viable alternative to sectional and modal methods for

representing aerosol microphysical processes in atmospheric models (Wright et al., 2000; Wright

et al., 2001; Yu et al., 2003).  Operationally, the MOM is a method for direct tracking of the

lower-order moments of a particle distribution function (pdf) rather than the distribution itself.

This reduction in number of variables contributes much to the computational efficiency of the

method while offering unique advantages for engineering applications requiring simulation of

particle populations under conditions that can include new particle formation, evaporation,

growth by condensation and coagulation, and complex mixing flows (Hulburt and Katz, 1964;

McGraw and Saunders, 1984; Pratsinis, 1988; Jurcik and Brock, 1993; LaViolette et al., 1996;

Yu et al., 2003).  Closure of the moment evolution equations, which has always been a key issue

with the MOM, has been achieved for general particle growth laws by combining the MOM with

quadrature methods resulting in the quadrature method of moments (QMOM) (McGraw, 1997;

Barrett and Webb, 1998).  In addition to achieving closure, the QMOM, by exploiting a

fundamental mathematical connection between moments and quadrature abscissas and weights

(Press and Teukolsky, 1990),  yields a systematic and  accurate prescription for reliable

estimation of the physical and optical properties of a particle population directly from its lower-

order moments (McGraw et al., 1995; Wright, 2000; Rosner et al., 2003).  Recently the QMOM

has been extended to model the chemically-resolved dynamics of multicomponent internally-

mixed aerosols (McGraw and Wright, 2003) (the assumption of internal mixing reduces the

problem to a univariate one for which the composition of a particle is determined from its mass).
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With a few mostly bivariate exceptions (e.g., Strom et al., 1992; Xiong and Pratsinis,

1993; Wright et al., 2001), particle distribution functions (pdfs) have generally been

approximated using only a single (univariate) particle coordinate, such as radius or mass.  On the

other hand, there is a growing need for reliable multivariate pdf models in such diverse fields as

combustion, nano-particle synthesis and assessment of radiative and health effects of

atmospheric aerosols and their impact on climate.   This is driven, in part, by new advances in

the technology for particle measurement.  For example, field-deployable, single-particle mass

spectroscopic techniques now furnish the composition of multicomponent aerosols in real time

and on a particle-by-particle basis (Murphy and Thomson, 1995; Suess and Prather, 1999).

Multicomponent thermodynamic models (Clegg et al., 1998), capable of estimating the phase

stability and evaporation rates of mixed particles, provide yet another driver for development of

a multivariate aerosol model as such detailed information is underutilized in a univariate

description.  The analysis of single-particle measurements has spurred the development of

sophisticated software tools for multivariate data visualization, analysis, and compression (Imre,

2003).  The need for efficient microphysical-based simulations that can be run in real time and

compared with these new kinds of measurements has, in turn, motivated our development of the

present multivariate, statistically-based aerosol model.   Interestingly, some the methods

developed below for simulation (Sec. 2.2) are better known historically for their applications to

data analysis and compression.

The great efficiency of moment methods makes them ideal candidates for multivariate

applications.  The following sections develop the mathematical foundation for a fully

multivariate extension of the QMOM using principal components analysis (PCA).  The resulting

PCA-QMOM is illustrated in Sec. 3 for a multivariate normal particle population in order to
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compare various quadrature point assignments with analytic results, but the method is by no

means limited to this case.  In Sec. 4 we describe how to estimate physical and optical properties

of the particle population, and obtain closure of the moment evolution equations, directly from

the mixed moments tracked in a simulation.  Application of the PCA-QMOM to the simulation

of generally-mixed aerosols evolving under condensation and coagulation is described in the

following paper (Part II).

2 Mathematical Approach

In this paper we treat generally-mixed, multivariate particle distribution functions

(pdfs), for which internally-mixed and externally-mixed particle populations are special

limiting cases.  For definiteness, examples of the pdfs will be drawn mostly from the

composition space of a multicomponent, but otherwise uniform-particle aerosol (i.e. an

aerosol consisting of a distribution spherical particles with homogeneous mixing within

each particle).  The description of particles of mixed size and shape is presented in Part

II.

2.1 Multivariate distribution functions, moments, and quadrature approximations

for generally-mixed particle populations

Consider the multivariate pdf for particle number, f m m mh( , ,...., )1 2  where h is the

number of components.  This distribution function gives the number of particles per unit

volume having component masses m1 between m1 and m dm1 1+ , etc.   Note that

f m m mh( , ,...., )1 2  is still not the most general description possible because it assumes that

each particle is homogeneously mixed.  (For example, a homogeneously mixed particle

and a "core-mantle" particle each having  the same overall composition would not be

distinguished in this representation; although they could be distinguished by the methods
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to be described if additional variables were introduced.)  For ease of presentation we will

limit discussion to distributions of the type f m m mh( , ,...., )1 2  whose treatment, while not

the most general case possible, requires a considerable advance in the representation of

multivariate particle populations.

The total mass distribution, giving the total mass of particles per unit volume

having m1 between m1 and m dm1 1+ , etc. is:

     q m m m m m m f m m mh h h( , ,..., ) ( ,..., ) ( , ,..., )1 2 1 2 1 2= + + + (2.1)

For internal mixtures these multivariate distributions reduce to univariate forms f m( )

and q m( ) dependent only on the total particle mass, m m m mh= + + +1 2 . . .  (McGraw

and Wright, 2003).   Other distribution functions are also obtainable from the full

distribution, for example, the marginal distributions of the multivariate number

distribution are defined as:

f m f m m m dm dm dmh h1 1 1 2 2 3( ) ( , ,..., ) ...= ∫ (2.2)

etc.

Multivariate mixed moments of the number distribution are defined as:

µkl w
k l

h
w

f

k l
h
w

h hm m m m m m f m m m dm dm dm... ... ... ( , ,..., ) ...≡ = ∫1 2 1 2 1 2 1 2     (2.3)

where we will used the simplified notation, with moments µkl w... , in cases where no

ambiguity can arise, and the more complete angular bracket notation otherwise.  Thus the

total mass of all the particles per unit volume is:

M mi f
i

= ∑ (2.4)
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which is also equal to the zeroth moment of the internal mixture mass distribution, q m( ),

and to the first mass moment of the internal mixture number distribution, f m( ).

Moments suitable for comparison with the mass (m) moments of an internal mixture can

be calculated as combinations of the general mixed moments of multivariate

distributions.  Thus the kth mass moment of f m( ) is:

( ... ) ( )m m m m f m dmh
k

f

k
1 2+ + + = ∫ , (2.5)

where the left hand side is a linear combination of multivariate mixed moments whose

coefficients are defined by the expansion.  Similarly we can define the m-moments of the

individual species distributions of an internal mixture q m m f mi i( ) ( )= :

m q m dm m m m mk
i h

k
i f∫ = + + +( ) ( ... )1 2 (2.6)

where the right hand side is a linear combination of mixed moments of the type defined

by Eq. 2.3.  Thus any of the moments arising in the treatment of internal mixtures can be

obtained in terms of the more general mixed moments.  In an external mixture,

f m m mh( , ,...., )1 2  simply decomposes into a sum of non-interacting particle populations.

These can themselves be multivariate, but  are usually taken to be univariate for ease of

simulation.  Accordingly, there is no need here to further examine the external mixing

case.  Indeed, the more interesting case that the pdf decomposes into a set of multivariate

populations that do interact is handled using the PCA-QMOM in Part II.

Consider N-point quadrature approximations to some of the multi-dimensional

integrals given above - other cases follow in similar fashion.  The quadrature points (to

illustrate for the bivariate case) are of the form { , , }m m wj j j1 2  for j N= 1 to .  We will use

a subscript i  to label species and subscripts j, and sometimes k, to label quadrature
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points.  The weight of the jth  quadrature point is wj .  The quadrature approximation to

Eq. 2.3 is:

µkl w j
k

j

N

j
l

hj
w

jm m m w... ...≈
=

∑ 1
1

2 (2.7)

In similar fashion, the quadrature approximation to Eq. 2.6 is:

m m m wk

q ij
j

N

j
k

j
i

≈
=

∑
1

(2.8)

where m m m mj j j hj= + + +1 2 ...  is total mass for quadrature point j.  We are especially

interested in assignments of the quadrature points for which, for certain moments, the

approximate equalities of Eqs. 2.7 and 2.8 become exact.

The key to the QMOM is the mathematical method that allows optimal

assignment of the quadrature points when only the moments of the pdf are known.

Mathematical techniques for assigning quadrature points in higher dimension, although

the subject of a number of articles and monographs (see for example Engels, 1980), are

not as developed as in the univariate case; especially in cases where only the lower-order

moments of the weight functions (i.e. the pdf's) are known.  Quadrature points were

assigned in a bivariate extension of the QMOM by inverting different sets of 9 mixed-

moments, to obtain corresponding sets of 3 quadrature points in the plane and,

alternatively, by inverting 36 mixed-moments, using a nonlinear search algorithm, to

obtain 12 points (Wright et al., 2001).   A variant of the 3-point quadrature assignment

was recently applied to the simulation of coagulating and sintering nanoparticles in

flames (Rosner and Pyykonen, 2002).  These assignments, although accurate and

resulting in simulation times that are orders of magnitude faster than a full 2D sectional
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approach, can still be computationally intensive when a nonlinear search is required and

are not readily extendable to higher dimensions.  The remaining parts of this section

introduce a systematic and highly efficient approach to the assignment of quadrature

points in higher dimension.

2.2 Principal Components Analysis (PCA)

Principal components analysis (PCA) is a statistical method in which the lower-order

mixed moments, forming the elements of the covariance matrix, are utilized for the

characterization and analysis of multivariate data (Johnson and Wichern, 1992;

Diamantaras and Kung, 1996).  The covariance matrix is constructed as follows: suppose

a multivariate particle population characterized by the normalized pdf, or probability

density function,  ̃ ( , ,..., )f x x xh1 2  where xi  can refer to the mass of species i, as above, or

to some other variable. The covariance matrix  Σ  is a symmetric h h×  matrix having

elements:

Σ ij i j i j f i f j f
x x x x x x= ≡ −cov( , )

˜ ˜ ˜
(2.9)

where the quantities on the right hand side are lower-order mixed moments in the

notation of Eq. 2.3.  PCA approaches the interpretation of the variance-covariance

structure of  ̃ ( , ,..., )f x x xh1 2  by forming linear combinations of the original variables, xi .

The principal components are those linear combinations having coefficients given by the

elements of the eigenvectors, g j , of Σ . The eigenvectors form the columns of an

orthogonal matrix, G, that transforms Σ  to diagonal form (Johnson and Wichern, 1992):

 G G DTΣ =  .   (2.10)
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GT  is the transpose of G.  D is a diagonal matrix containing as its elements the non-

negative eigenvalues of Σ  ordered according to decreasing size λ λ λ1 2 0≥ ≥ ≥ ≥... h .

Following this ordering, the j th  column of G, which we denote by the vector g j , is the

normalized eigenvector of Σ  corresponding to the eigenvalue λ λj j j j ( )Σg g= .  Thus the

j th principal component is:

y x x xj j j hj h= + + +G G G1 1 2 2 ...

with variance y yj j j
2 2

− = λ .  Gij  is the element located in the i th row and j th  column

of G. The principal coordinates are uncorrelated as cov( , )y yi j ij= =D 0  for i j≠ .

Figures 1 and 2 show a collection of 1000 pts (small points in the figure) sampled

from a bivariate distribution ̃( , )f x x1 2  in the original coordinates ( , )x xi i1 2  and in the

principal coordinates  ( , ) : ( ) ( )y y y x x x xi i i i i1 2 1 11 1 1 12 2 2 = − + −G G ,

y x x x xi i i2 21 1 1 22 2 2= − + −G G( ) ( ) centered on the mean.  In centered coordinates

where each point is represented by a vector from the origin, and   
r
µ  locates the mean,

these equations may be written more compactly as:   
r r r
y xi i= −G( )µ . (Assignment of the

quadrature points is discussed in the following subsection). As expected from the

eigenvalue ordering described above, the largest variance occurs for the first principal

component, y1.

From the lower-order mixed-moments, alone, PCA provides a technique for

extracting those uncorrelated linear combinations of the original coordinates that best

characterize the variability of the pdf.  Furthermore, significant data compression can

often result upon replacing the original, h-dimensional, representation with a reduced, k-
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dimensional, one using just the first k principal components.  The latter property of PCA

can be especially useful when the original dimensionality is large ( h >>1) and has been

widely utilized in signal and image data compression (Diamantaras and Kung, 1996).

For the present study, PCA finds its most valuable application in the assignment of

quadrature points.  This is described in the following subsection.  The compression

features of PCA are further illustrated in Part II.

2.3 Application of PCA to the assignment of quadrature points in the multivariate

QMOM

We begin with a brief summary of the correspondence between moments and

quadrature abscissas and weights in the univariate case of one coordinate dimension

(McGraw, 1997; Wright et al., 2000).  These results are subsequently used to assign

quadrature points in h dimensions from h univariate moment sequences; each sequence

consisting of moments of the pdf projected onto one of the h principal axes.  Although

the pdf itself is unknown, the moments from pdf projection onto an arbitrary axis are

obtained as linear combinations of the mixed-moments whose evolution is tracked in the

original coordinate frame.  The mixed moments are shown to transform as tensor

elements under a rotation of the coordinate frame.

A special form of 2-point quadrature (with equal weights) suffices to recover the

first three integral moments { , , }µ µ µ0 1 2 .  These have coordinates

{{ , },{ , }}

{{ / / ( / ) , . },{ / / ( / ) , . }}

x w x w1 1 2 2

1 0 2 0 1 0
2

0 1 0 2 0 1 0
2

00 5 0 5

=

− − + −        µ µ µ µ µ µ µ µ µ µ µ µ µ µ
  (2.11)

having the property that µk
k kx w x w= +1 1 2 2  for k = 0 1 2, , .  Removal of the restriction of

equal weights results in  general 2-point and 3-point quadratures with recovery of the first
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four integral moments { , , , }µ µ µ µ0 1 2 3  and first six integral moments

{ , , , , , }µ µ µ µ µ µ0 1 2 3 4 5 , respectively.  Algorithms for obtaining general n-point quadratures

from moment sequences have been developed (McGraw, 1997).  An especially efficient

approach utilizes the subroutine ORTHOG from Numerical Recipes, and can be applied

to ordinary moment sequences, provided n is not too large, as well as to "modified

moments", which are linear combinations of the ordinary moments (Press et al., 1992).

For example, ORTHOG has proven to be a highly efficient and robust algorithm for

obtaining general 3-point quadratures from 6-moment sequences in simulations of

atmospheric aerosols by the QMOM (Wright et al., 2000, Yu et al., 2003).

Without loss of generality, it is often more convenient to obtain quadrature point

representations for normalized pdf's centered on the origin.  Quadrature points for

unnormalized-uncentered pdfs are trivially recovered by multiplying the normalize

weights by particle number density and translating the centered abscissas to the true

coordinate means.  In terms of the normalized and centered moments, µ̃k ,

˜ ( ) ˜( )µk
kx x f x dx= −∫

where µ̃0 1=  and µ̃1 0= , Eq. 2.11 simplifies to  {{˜ , ˜ },{˜ , ˜ }}x w x w1 1 2 2 =

{{ ˜ , . },{ ˜ , . }}− µ µ2 20 5 0 5 .  The centered moments are computed in terms of same-order

and lower-order moments of the uncentered pdf.  Thus:  µ̃ µ µ2 2 1
2= − ,

µ̃ µ µ µ µ3 3 2 1 1
33 2= − + , etc. where µ0 1= .  Similar expansions are readily carried out for

multivariate mixed moments.  Thus, for example, ˜ ( )µ µ µ20 20 10
2= − , µ̃ µ µ µ11 11 10 01= − ,

etc.,  with µ00 1= , showing that the covariance matrix elements (Eq. 2.9) are centered

mixed moments.
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2.3.1 Back projection

Our assignment of quadrature points in higher dimension makes use of the

method of back projection and is similar to image construction from back projected

densities in tomography.  The approach is illustrated in Figs. 1 and 2 for the assignment

of quadrature points in the bivariate plane.  In Fig. 1 the PCA method isn't used; instead

the test pdf, f x x( , )1 2 , is simply projected onto the original coordinate axes to obtain the

corresponding marginal distributions f x1 1( )  and f x2 2( ) .  In fact, it is the moments of

these marginal distributions, and not the distributions themselves, that we require.   These

are, for f x1 1( ) , { , , , , , ,...}µ µ µ µ µ µ00 10 20 30 40 50  and for f x2 2( ) , { , , , , , ,...}µ µ µ µ µ µ00 01 02 03 04 05 .

Thus for projections along the original coordinate axes, the projected moments are simply

subsets of the bivariate mixed moments of f x x( , )1 2 .  Inversion of the x1  moments gives

quadrature points along the x1  axes, { , }x wk k1 1  for k = 1 to n and similarly for inversion of

the x2  moments to obtain { , }x wl l2 2  for l =1 to m.  The positions of these points for the

3-moment inversions, { , , }µ µ µ00 10 20  and { , , }µ µ µ00 01 02 , from Eq. 2.11, are indicated in

Fig. 1 by the intersection points of the horizontal and vertical hairlines with the

coordinate axes.  Back projection refers simply to running these projected-distribution

quadrature points, which lie on the axes, orthogonally back through the coordinate space

to obtain a set of quadrature points in the bivariate plane with abscissas located at the

intersections of the back projection lines.  These are the N = nm quadrature points

{ , , }x x w wk l k l1 2 1 2  for k = 1 to n  and l =1 to m, with obvious extensions to three and higher

dimensions.  Note that assigning the bivariate quadrature weights as products of the

univariate weights correctly preserves normalization.  In the simple case that the
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projected distributions are represented using normalized 2-point quadratures ( )n m= = 2 ,

with w w w w11 12 21 22 0 5= = = = . , the four points resulting from back projection (open

circles) have equal weights of 0.25.  The filled circles result on back projection following

the calculation of general 3-point quadratures along each coordinate axes using the

projected distribution moments { , , , , , }µ µ µ µ µ µ00 10 20 30 40 50  and { , , , , , }µ µ µ µ µ µ00 01 02 03 04 05

in the construction.  The resulting nine quadrature points will in general have non-equal

weights.

Although Fig. 1 illustrates the method of back projection for assigning quadrature

points in higher dimensions, it is clear, even from visual inspection, that this particular

assignment, projecting onto the original coordinate axes, is far from optimal.  Significant

weights appear in regions where the pdf density is low, and the distribution of quadrature

points is not at all matched in shape to the pdf.  Indeed the only positive feature of this

assignment is that the resulting quadrature points correctly reproduce the moments used

in the back projection construction itself.  In general, only these moments will be

correctly reproduced.  The optimal assignment results on back projection from the

principal axes ( , )y y1 2 , Fig. 2, as we now show.  For this construction we first require the

centered moments from pdf projections along each of the principal axes.  Once these

have been obtained, location of the quadrature points along each axes, required for the

back projection, follows as in any univariate moment inversion (see above).  Thus we

focus here on obtaining the projected pdf moments in the principal coordinate frame.

2.3.2  Rotation of multivariate mixed moments to the principal coordinate frame

Inspection of Eq. 2.3  shows the multivariate mixed moments to involve centered

coordinate products in a way that suggests their transformation as tensor elements under
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axes rotation.  This is indeed the case and it is readily shown that centered moments of

order s, where   s k l w= + + +L  is the sum of the indices appearing in Eq. 2.3, transform

into each other as the hs elements of a symmetric tensor, T , of rank s.  For second order

moments, these are the elements of the covariance matrix,  Tij ij ij= =Σ µ̃ .

Transformation to the principal frame is described by the matrix G of Eq. 2.10:

T Tmn im
ji

jn ij
' = ∑∑ G G (2.12a)

and Tmn
'  has the same elements as the diagonal matrix D.  Similarly, the third order

moments transform as the elements of the third rank tensor:

T Tmno im jn ko ijk
kji

' = ∑∑∑ G G G  (2.12b)

and so on for higher order moments and higher rank tensors.  For a bivariate problem, Eq.

2.12b describes the transformation of 2 83 =  tensor elements.  These are identified with

the moments by a pattern:  T111 30= µ̃ , T T T112 121 211 21= = = µ̃ , T T T122 212 221 12= = = µ̃ , and

T222 03= µ̃  that is easily extended to the h-variate case (in which case the tensor indices

will vary from 1 to h).  The transformed moments are

 ˜ ˜ ( , )'µkl
k l

PCAy y f y y dy dy= ∫ 1 2 1 2 1 2  (2.13)

where f̃PCA  is the transformed version of f̃ .  Specifically, Eq. 2.12b is a recipe for

calculating the third-order moments of pdf projections onto the principal axes.  Two of

these, ̃ ' 'µ30 111= T  and ˜ ' 'µ03 222= T , are required when general 2-point and higher-order

quadratures are used.
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2.3.3 Assignment of quadrature points through back projection  in the principal frame

Figure 2 shows the distribution of quadrature points in the principal frame.  The

open circles are the four points obtained from  3-moment inversions with the primed

moment sets, {˜ , ˜ , ˜ }' ' 'µ µ µ00 10 20  and {˜ , ˜ , ˜ }' ' 'µ µ µ00 01 02 .  Because ̃ 'µ00 1= , and ˜ ˜' 'µ µ10 01 0= = , Eq.

2.11 simplifies to give the quadrature points y y1 1 2 2= ± = ±λ λ;  , located along the

principal axes, with weights of 1/2 where the λi  are eigenvalues of the covariance matrix.

After back projection we obtain the four points shown in the figure with coordinates

{ , }± ±λ λ1 2  in the principal frame and identical weights of 1/4.  If we limit the

calculations to inversion of the first three integral moments along each axes, this pattern

persists to higher dimensions - so for h  dimensions the coordinates of the 2h  quadrature

points in the principal frame are:

  { , ,..., }± ± ±λ λ λ1 2 h (2.14)

 with identical weights of 2−h .  The filled circles of Fig. 2 show the location of nine

quadrature points obtained from general 3-point quadratures along each principal axes by

applying ORTHO to the projected primed moment sequences {˜ , ˜ , ˜ , ˜ , ˜ , ˜ }' ' ' ' ' 'µ µ µ µ µ µ00 10 20 30 40 50

and {˜ , ˜ , ˜ , ˜ , ˜ , ˜ }' ' ' ' ' 'µ µ µ µ µ µ00 01 02 03 04 05 .  These sequences are obtained from Eqs. 2.12 and their

extension to fourth- and fifth-rank tensor transformations for the corresponding order

moments.  The nine quadrature points (filled circles) with unequal weights result after

back projection.

To investigate which moments are correctly reproduced from these points, we

need one additional property inherent to the assignment of quadrature points through

back projection.  This is moment factorization.  To illustrate for the bivariate case:



15

µ µ µkl i
k

ij
j

l
i j i

k
i

i
j

l
j

j
k ly y w w y w y w= = 










=∑ ∑ ∑1 2 1 2 1 1 2 2 0 0 (2.15)

where the prime superscripts have been omitted because the factorization of Eq. 2.15

applies to whichever frame was used for back projection and does not depend on being in

the principal frame.  The first equality follows from the use of back projected abscissas

and weights.  Such factorization of the moments indeed occurs when the pdf itself

factors, for example, again for the bivariate case, f y y f y f y( , ) ( ) ( )1 2 1 1 2 2= .  If such

factorization of the pdf occurs, as it does for a multivariate normal distribution (Sec. 3), it

will occur in the principal frame, and all combinations of lower-order mixed moments

will be given correctly by Eq. 2.15.  For example, for the 9-point quadrature of Fig. 2 all

36 bivariate moments of the form µkl  for k l, = 0  through 5 will be exactly reproduced.

Note from the tensor transformation equations (Eqs. 2.12) that if a full set of moments of

order s is determined in one frame, the set is determined in all rotated frames.  Thus the

21 bivariate moments of orders 0 through 5 are exactly determined by the 9-point

quadrature of Fig. 2, in every rotated frame, if the pdf is factorable in the principal frame.

Finally, whether the pdf is factorable of not, the full set of second order moments, which

comprise the elements of the covariance matrix, are correctly described by either the

four-point or the nine-point quadratures of Fig. 2.  We have already seen that the diagonal

elements are given correctly.  For the off diagonal elements in the principal frame

˜ ˜ ˜' ' 'µ µ µ11 10 01 0= = , as the first equality is assured by Eq. 2.15.  Thus, whether the pdf

factors or not, the PCA quadrature construction exactly reproduces the full set of second

order moments (diagonal and off-diagonal) in the principal frame and, therefore, in all

rotated frames (of course this exactness is preserved on translation and normalization of
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the quadrature points as well as on rotation).  The trend continues with increasing number

of components and the 2h  quadrature points from even the simplest, 3 moments per

coordinate, construction (Eq. 2.14) recover all elements entering the h h×  covariance

matrix of an h-variate problem, as well as the first- and zeroth-order moments

representing pdf location and normalization.  For example, the four quadrature points of

Fig. 2 (open circles) give correctly the two variances and covariance of the bivariate pdf

when projected onto the axes of any rotated frame.  These efficacious properties

demonstrate that the combination of PCA and back projection results in an optimized

assignment of quadrature points for use in the multivariate QMOM.

 In this section we have shown how to assign quadrature points using the PCA

transformation to obtain a set of abscissas, illustrating for the bivariate case, { , }y yk l1 2  and

weights w wk l1 2  for k=1 to n and l=1 to m.  It is sometimes convenient to relabel these

points using a single index in a one-to-one but otherwise arbitrary mapping ({ , } { }k l j↔ ).

For example, with j m k l= − +( )1 , all points will be represented as j takes on integral

values from 1 to nm.  Thus the quadrature points in the principal frame may be

represented by the vectors 
  
r
yj  having components { , }y yj j1 2  and weights w w wj k l= 1 2 ,

where j corresponds to the {k,l} pair in the mapping.  In Sec. 2.2 we obtained the relation

  
r r r
y xi i= −G( )µ  for transforming points to the PCA coordinates.  The inverse of this linear

relation transfers the quadrature points generated in the principal frame back to the

original frame where they will be used:

  
r r r
x yj j= +GT µ (2.16)
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where the components of   
r
µ  are given in terms of the normalized first-order moments, for

example, { , }µ µ10 01  in the bivariate case.  The weights are, of course, unchanged during

this transformation.

The present assignment yields quadrature points that are in one-to-one

correspondence with a set of moments, but unlike previous applications of the QMOM in

one and two dimensions, the present assignment is not free of additional constraints on

the points.  For example, with the otherwise unconstrained bivariate assignment of

Wright et al., (2001), 3 quadrature points are in correspondence with 9 moments, 12

points with 36 moments, etc.  Thus the number of quadrature points is minimized, but the

inversion of the moment set to get these points can be ill-determined, or at best difficult

to carry out.  With the PCA assignment, on the other hand, 4 quadrature points,

constrained to have equal weights and lie on the corners of a rectangle, are in one-to-one

correspondence with only 6 moments (1 for normalization, 2 for location of the mean,

and 3 for the elements of the covariance matrix).  This flexibility to include additional

constraints and still have a well defined mapping is very useful feature of the QMOM.

The fewer number of moments reproduced in the PCA-QMOM is more than

compensated for by the computational ease with which the quadrature abscissas and

weights can be assigned.   In Part II we show how to update the moments in an aerosol

dynamics simulation using quadrature points in the original coordinate frame.

3  Illustrative Calculations for a Multivariate Normal Population

Implementation of the PCA QMOM is especially transparent when the pdf is a

multivariate normal (Gaussian) distribution.  Real aerosol populations often approximate

normal distributions after an appropriate coordinate transformation, the best known
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example being the log-normal distribution, which is normal in z m= log( ).  Such

coordinate transformations are examined in Part II.  Here we analyze the case that the

distribution is already normal for the insight that such an analysis provides into the

workings of the PCA-QMOM.

The multivariate normal distribution has the form (Feller, 1971):

  f x x x q xh( , ,..., ) exp[ ( )]1 2
1= −−γ r

(3.1a)

where γ −1 normalizes the distribution,   
r
x x x xh= ( , ,..., )1 2  is now a row vector, and

  

q x q x x x xij
i j

h

i j( )
,

r r r= =
=

∑
1

Q T . (3.1b)

The normal density centered at   
r
µ µ µ µ= ( , ,..., )1 2 h  is given by   f x( )

r r
− µ .  The coefficient

matrix Q is the inverse of the covariance matrix Σ  introduced in Sec. 2, Q = −Σ 1, and

the normalization constant is determined by the equation:  γ π2 2= ( ) | |h Σ  where | |Σ  =

| |Q −1 is the determinant of Σ  (Feller, 1971).  The transformation to principal coordinates

also transforms Eq. 3.1b to a sum of square terms and factors Eq. 3.1a:  D G QG1 T− =

where G  is as in Eq. 2.10 and D 1−  is the inverse of D.  Thus the left hand side of Eq.3.1a

factors in the principal frame into a product of 1D normal distributions:

f y y y f y f y f yPCA h h h( , ,..., ) ( ) ( ) ... ( )1 2 1 1 2 2=   (3.2a)

where

f y
y

i i
i

i

i

( ) exp= −










1

2 2

2

πλ λ
, (3.2b)

consistent with the normalization of Eq. 3.1.

Assignment of quadrature points by back projection is the required choice for a

factorable pdf, even when the factors are non-Gaussian distributions.  Consider, for
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example, the quadrature approximation to bivariate integrals over a known kernel

function φ( , )y y1 2 :

φ φ φ

φ φ

( , ) ( , ) ( , ) ( ) ( ) ( ) ( , ) ( )

( ) ( , ) ( ,

y y f y y dy dy y y f y f y dy dy f y y y f y dy dy

f y y y w dy y y

PCA

l l
l

k l

1 2 1 2 1 2 1 2 1 1 2 2 1 2 1 1 1 2 2 2 2 1

1 1 1 2 2 1 1 2

∫∫ ∫∫ ∫∫

∑∫

= = ( )
≈ 





≈ )) ( , )
,

w w y y wk l
lk

j j
j

j1 2 1 2∑∑ ∑≡ φ

(3.3)

Here the assignment of quadrature abscissas and weights is identical to that of the back

projection method of Sec. 2, but emerges naturally as the direct product of 1D

quadratures due to the factorization of f y yPCA( , )1 2 .  The first equality results from

factorization of the pdf.  The third and fourth approximate equalities apply 1D quadrature

to the principal coordinates y2  and y1, respectively.  The last equality simply relabels the

quadrature points using a single index ({ , } { }k l j→ ) as in Sec. 2.  The weight of the jth

quadrature point is, as in back projection, given by w w wj k l= 1 2  where j corresponds to

the {k,l} pair in the mapping and varies from 1 to the total number of quadrature points

N.  Higher-order quadrature abscissas and weights for the standard weigh function of Eq.

3.2b are available in tabulated form (Abramowitz and Stegun, 1972), ORTHOG is not

required.  For 2-point quadrature, w wi i1 2 1 2= = /  and y yi i i i1 2= − = +λ λ,   just as with

the equal-weight 2-point quadratures of Sec. 2.  In general there will be N Ni
i

h

=
=

∏
1

quadrature points in h dimensions with Ni -point quadrature along principal coordinate i.

Principal components analysis is based on the covariance matrix and does not

require that the pdf be factorable or have multivariate normal form.  On the other hand,

the application of PCA to multivariate normal distributions reproduces a greater number
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of moments because of the factorization, as described in Sec. 2, and yields contours of

constant pdf density directly from the moments.  The contours of constant density for an

h-dimensional multivariate normal distribution are the ellipsoids defined by the quadratic

form:

( ) ( )x x− − =−µ µΣ 1 2T c (3.5)

These ellipsoids are centered at µ µ µ µ= ( , ,..., )1 2 h  and have axes ±c i iλ 1 2/ g  in the notation

of Sec. 2.  Figure 2 shows the disposition of ellipsoids for σ  (1 standard deviation) and

2σ  (2 standard deviations) obtained from Eq. 3.5 for h = 2  and c = 1 and c = 2 ,

respectively.  The 1σ  ellipsoid is inscribed in the rectangle having as its corners the

abscissas from the 4-point quadrature scheme.  The trend continues to higher dimension.

For example, in  3 dimensions there are eight quadrature points having identical weights

( / )wj = 1 8  and coordinates { , , }± ± ±λ λ λ1 2 3  located at the corners of a rectangular

parallelepiped into which is inscribed the σ  ellipsoidal surface from Eq. 3.5 for h=3 and

c=1.

It is important to emphasize that all of the quantities introduced in this section,

apart from the full pdf itself, were obtainable using only lower-order moments up to and

including the second-order moments of the covariance matrix.  These include the

principal coordinates, principal values, which are the variances in the principal frame,

quadrature points for 2h -point quadrature, and ellipsoidal probability surfaces for

estimating the shape and breadth of the distribution.  Together these moment-derived

quantities furnish considerable information about the pdf, and a direct route to the
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estimation of its physical and optical properties represented as integrals over a known

kernel function as in Eq. 3.3.

4. Physical and optical properties and closure of the moment evolution equations

Thus far we have focused on the assignment of quadrature points and not on their

use in the QMOM -- estimation of aerosol properties and moment evolution.  Both

applications require the estimation of integrals of the type:

  

I x f x dx x x x wj j
j

N

hj j= ≈∫ ∑
=

φ φ( ) ( ) ( , ,..., )
r r r

1 2
1

(4.1)

where the kernel   φ( )
r
x  is known.  This may represent an optical kernel, such as an

extinction coefficient, or a dynamical kernel for a microphysical process (e.g.

sedimentation, condensation growth, cloud activation, etc.) governing aerosol evolution.

In the latter case the quadrature approximation becomes the right hand side of a linear

differential equation describing moment evolution.  The fact that the evolved moments

can then be inverted to give updated quadrature points, by the methods described in Sec.

2, completes the closure cycle for moment evolution (McGraw, 1997).  Closure methods

are illustrated for multivariate condensation and coagulation kernels in Part II.

Quadrature approximations work best where the kernel is smooth and well

approximated by polynomial forms.  In the univariate case it  is known that the

quadrature approximation of Eq. 4.1 is exact for N-point quadrature for kernels of

polynomial degree less than or equal to 2N-1: φ( ) ...x a bx cx ex N= + + + + −2 2 1 with

arbitrary coefficients.  Physically realistic kernels can usually be fit well by 5th -order

polynomials, and the corresponding 3-point quadratures have proven highly accurate

(McGraw et al., 1995; McGraw and Wright, 2003).  [However, see (Wright et al., 2002)
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for some exceptionally non-smooth kernels requiring special treatment.]  For the

multivariate case, the number of mixed moments that are exactly reproduced increases

rapidly with number of quadrature points and with dimension.  Consider, for example, the

2h -point quadrature of Eq. 2.14.  This will be exact for general   f x( )
r

 when the kernel is

of the form:

  

φ( )
r
x a b x c x xi

i

h

i ij
j

h

i

h

i j= + +
= ==
∑ ∑∑

1 11

. (4.2)

This expression contains 1 1 2 3 2 22+ + + = + +h h h h h( ) / ( ) /  distinct terms

corresponding to the number of distinct mixed integral moments that will be exactly

reproduced by the 2h quadrature points of Eq. 2.14 (these include all of the moments

entering into the covariance matrix).   In the special case that the pdf factors:

  f x f x f x f xh h( ) ( ) ( ) ( )
r

L= × ×1 1 2 2 , the number of moments exactly reproduced increases to

3h (these are the factorable moments 
  
µ µ µ µijk i j kL L L L= × × ×00 0 0 00 ...  for i, j, k, … = 0

to 2).  If, in addition to factorization, the factors are symmetric about their mean values,

as is the case with the multivariate normal distribution, for example, the number of

moments exactly reproduced increases to 4h  (
  
µ µ µ µijk i j kL L L L= × × ×00 0 0 00 ... for i, j, k,

… = 0 to 3).   This last result derives form the fact that the (centered) third moments

along each coordinate vanish for a symmetric distribution, and thus are also reproduced

exactly by the equal-weight 2-point quadratures along each coordinate (i. e. equal-weight

2-point quadrature is equivalent to general 2-point quadrature for the symmetric

distribution case).
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5.  Summary

A new method has been developed for extending the moment-based

representation of aerosols to multivariate particle populations.  In essence, the full

particle distribution function has been replaced by a set of lower-order mixed moments

and corresponding quadrature points assigned through principal components analysis and

back projection.  The assignment of quadrature points is central to the QMOM, which has

been extended here using PCA to the multivariate domain.  For calculations, the

quadrature abscissas can be viewed as surrogate particle compositions, with weights

given by the quadrature weights, optimally assigned through PCA.  Aerosol physical and

optical properties, usually calculated by numerical integration over a known kernel

function, provided the full pdf is known, or by summation over a large number of

measured single-particle compositions, can now be estimated reliably and accurately as a

summation over a small number of PCA-assigned quadrature points derived from

moments.  For example, multivariate kernels of the kind given in Eq. 4.1, arise naturally

in multicomponent thermodynamic models of vapor-particle exchange (Clegg et al.,

1998; Capaldo et al., 2000), and their evaluation is often the time-limiting step in aerosol

models.   With the PCA-QMOM the number of calls to the thermodynamic module is

minimized as the rates of vapor-particle exchange are required only at those few particle

compositions specified by the quadrature points.

The steps for locating multivariate quadrature points from moments using PCA

can be summarized as follows:  (1) Setup the covariance matrix, Σ , consisting of the

centered moments of second order in the original coordinates, and solve the eigenvalue

problem associated with this matrix to obtain the ordered principal values { }λi  and the
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matrix G .  (2) Obtain the quadrature points first along each principal axes.  Note that

inspection of the principal values will help decide how many points to take.  For

example, one might use 3-point quadrature along y1 and 2-point or even 1-point

quadratures along those remaining axes for which the variances are small.  For higher-

order quadratures, one will need to carry more moments for computing the higher-order

projected moments using the tensor transformations of Eqs. 2.12, and invert the resulting

projected moment sequences using ORTHOG.  (3)  Back project to obtain the abscissa

locations in higher dimension and form the product weights (c.f. Eq. 2.15 for the bivariate

case).  For equal-weight 2-point quadratures along each axes, the location of the points is

given immediately by Eq. 2.14 and one can bypass steps 2-3. (4) Convert quadrature

points to original coordinates using Eq. 2.16.
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FIGURE CAPTIONS

Fig. 1.  Assignment of quadrature points in the orginal coordinates frame:  Figure shows

1000 points sampled from a biviariate pdf in the original state variables, x1  and x2 .  Open

circles:  Quadrature points derived from moments {0,1,2} along each coordinate (these have

equal weights).  Closed circles:  Quadrature points derived from moments {0,1,2,3,4,5}

along each coordinate (these have differing weights).

Fig. 2. Assignment of quadrature points in the principal coordinates { , }y y1 2  frame:  Sampled

points are the same as in Fig. 1.  Open circles:  Quadrature points derived from moments

{0,1,2} along each principal coordinate (these have equal weights).  Closed circles:

Quadrature points derived from moments {0,1,2,3,4,5} along each principal coordinate

(these have differing weights).  Ellipsoids for σ  (1 standard deviation) and 2σ  (2 standard

deviations) obtained from the covariance matrix, as described in Sec. 3, are also shown.
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